FANDOM


The characteristic polynomial of a matrix A is the polynomial satisfies the equation

$ |\lambda I_n - A| = 0 $

The roots of this function will be the eigenvalues of the matrix.

Example

Given the matrix

$ A = \begin{bmatrix}3 & 0 \\-1 & -1 \end{bmatrix} $

The characteristic polynomial will be

$ \begin{vmatrix} \lambda I - \begin{bmatrix}3 & 0 \\-1 & -1 \end{bmatrix} \end{vmatrix} = \begin{vmatrix} \lambda \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} - \begin{bmatrix}3 & 0 \\-1 & -1 \end{bmatrix} \end{vmatrix} = 0 $
$ \begin{vmatrix} \lambda - 3 & 0 \\1 & \lambda + 1 \end{vmatrix} = (\lambda - 3) (\lambda + 1) - (0)(1) = (\lambda - 3) (\lambda + 1) = 0 $

The eigenvalues of A will be -1 and 3.

Community content is available under CC-BY-SA unless otherwise noted.