Математика
Advertisement

Теорема о монотонной сходимости утверждает, что если последовательность неотрицательных функций монотонно сходится к предельной функции, то интегралы этих функций сходятся к интегралу предела. Эта теорема является важнейшим инструментом для доказательства многих положений функционального анализа и теории вероятностей.

Формулировка из функционального анализа

Пусть фиксировано пространство с мерой . Предположим, что - монотонная и неотрицательная почти всюду последовательность измеримых и интегрируемых по Лебегу функций на . Тогда

Формулировка из теории вероятностей

Так как математическое ожидание случайной величины определяется как её интеграл Лебега по пространству элементарных исходов , вышеприведенная теорема переносится и в теорию вероятностей. Пусть - монотонная последовательность неотрицательных п.н. интегрируемых случайных величин. Тогда

.


Эта статья содержит материал из статьи Теорема Леви о монотонной сходимости русской Википедии.

Advertisement