Формула конечных приращений или теорема Лагра́нжа о среднем значении утверждает, что угол касательной к графику функции, дифференцируемой на отрезке, хотя бы в одной точке равен углу секущей, соединяющей концы этого графика.

Следствие

Функция, непрерывная на отрезке и дифференцируемая внутри него с ограниченной производной, удовлетворяет условию Липшица. Более точно пусть и Тогда

.

Обобщение

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.