Математика
Advertisement

текст.txt

Аксиомы

Существует бесконечное множество натуральных чисел — для любого натурального числа найдётся другое натуральное число, большее его..

См. также основную статью: Аксиомы Пеано

Введём функцию , которая сопоставляет числу следующее за ним число.

  1. ( является натуральным числом);
  2. Если , то (Число, следующее за натуральным, также является натуральным);
  3. (1 не следует ни за каким натуральным числом);
  4. Если и , тогда (если натуральное число непосредственно следует как за числом , так и за числом , то );
  5. Аксиома индукции. Пусть — некоторый одноместный предикат, зависящий от параметра — натурального числа . Тогда:
если и , то
(Если некоторое высказывание верно для (база индукции) и для любого при допущении, что верно , верно и (индукционное предположение), то верно для любых натуральных ).
Замечание. Иногда, в иностранной и переводной литературе, в первой и третьей аксиомах заменяют на . В этом случае ноль считается натуральным числом.

Теоретико-множественное определение

Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.

Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как не определены для всех пар чисел (иногда существуют, иногда нет).

  • Вычитание. Уменьшаемое Вычитаемое = Разность. При этом Уменьшаемое должно быть больше Вычитаемого (или равно ему, если считать 0 натуральным числом).
  • Деление. Делимое / Делитель = (Частное, Остаток). Частное и остаток от деления на определяются так: , причём . Заметим, что именно последнее условие запрещает деление на ноль, так как иначе можно представить в виде , т.е. можно было бы считать частным , а остатком = .

Следует заметить, что именно операции сложения и умножения являются основополагающими. В частности, кольцо целых чисел определяется именно через бинарные операции сложения и умножения.

Основные свойства

  1. Коммутативность сложения.
  2. Коммутативность умножения.
  3. Ассоциативность сложения.
  4. Ассоциативность умножения.
  5. Дистрибутивность умножения относительно сложения.

Натуральные числа в русском языке

  • Числа от 1 до 10 — один (1), два (2), три (3), четы́ре (4), пять (5), шесть (6), семь (7), во́семь (8), де́вять (9), де́сять (10).
  • Числа от 11 до 20 — одиннадцать (11), двенадцать (12), тринадцать (13), четырнадцать (14), пятнадцать (15), шестнадцать (16), семнадцать (17), восемнадцать (18), девятнадцать (19), двадцать (20).
  • Числа от 30 до 90 — тридцать (30), сорок (40), пятьдесят (50), шестьдесят (60), семьдесят (70), восемьдесят (80), девяносто (90).
  • Числа от 100 до 900 — сто (100), двести (200), триста (300), четыреста (400), пятьсот (500), шестьсот (600), семьсот (700), восемьсот (800), девятьсот (900).

См. также

Ссылки


Шаблон:Категория только в статьях

Эта статья содержит материал из статьи Натуральное число русской Википедии.

Advertisement