Моното́нная фу́нкция — это функция, приращение которой не меняет знака, то есть либо всегда неотрицательно, либо всегда неположительно. Если в дополнение приращение не равно нулю то функция называется стро́го моното́нной.

Определения

Пусть дана функция Тогда

  • функция называется возраста́ющей на , если
.
  • функция называется стро́го возраста́ющей на , если
.
  • функция называется убыва́ющей на , если
.
  • функция называется стро́го убыва́ющей на , если
.

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими, а убывающие функции невозраста́ющими. Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

  • (Критерий монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на и имеет в каждой точке производную Тогда
    возрастает на тогда и только тогда, когда
    убывает на тогда и только тогда, когда
  • (Достаточное условие строгой монотонности функции, имеющей производную на интервале) Пусть функция непрерывна на и имеет в каждой точке производную Тогда
    если то строго возрастает на
    если то строго убывает на

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль. Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

  • (Критерий строгой монотонности функции, имеющей производную на интервале) Пусть и всюду на интервале определена производная Тогда строго возрастает на интервале тогда и только тогда, когда выполнены следующие два условия:

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

  • Экспонента строго возрастает на всей числовой прямой.
  • Парабола строго убывает на на и строго возрастает на .
  • Константа одновременно возрастает и убывает на всей числовой прямой.
  • Канторова лестница — пример непрерывной монотонной функции, которая не является константой, но при этом имеет производную равную нулю в почти всех точках.
  • Функция Минковского — пример сингулярной строго возрастающей функции.

См. также


Эта статья содержит материал из статьи Монотонная функция русской Википедии.

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.