Компактное пространство — это такое топологическое пространство, в любом покрытии которого открытыми множествами найдётся конечное подпокрытие.

В топологии, компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

Связанные определения

  • Подмножество топологического пространства, являющееся в индуцированной топологии компактным пространством, называется компактным множеством или компактом.
  • Множество называется относительно компактным или предкомпактным, если его замыкание компактно.
  • Пространство называется секвенциально компактным, если из любой последовательности в нём можно выделить сходящуюся подпоследовательность.
  • Локально компактное пространство — топологическое пространство, в котором любая точка имеет компактную окрестность.

Свойства

Анекдот

Математик говорит девушке:
— Вы такая компактная…
Девушка наивно уточняет:
— В смысле, стройная и миниатюрная?
— Нет. Замкнутая и ограниченная!

Примеры компактных множеств

  • замкнутые и ограниченные множества в
  • конечные подмножества в пространствах, удовлетворяющих аксиоме отделимости T1
  • теорема Асколи-Арцела даёт характеризацию компактных множеств для некоторых функциональных пространств. Рассмотрим пространство C(X) вещественных функций на метрическом компактном пространстве X с нормой . Тогда замыкание множества функций F в C(X) компактно тогда и только тогда, когда равномерно ограничено и равностепенно непрерывно.
  • пространство Стоуна булевых алгебр
  • компактификация топологического пространства

История

Бикомпактное пространство — термин, введённый П. С. Александровым как усиление введённого М. Фреше понятия компактного пространства: топологическое пространство компактно — в первоначальном смысле слова — если в каждом счётном открытом покрытии этого пространства содержится его конечное подпокрытие. Однако дальнейшее развитие математики показало, что понятие бикомпактности настолько важнее первоначального понятия компактности, что в настоящее время под компактностью понимают именно бикомпактность, а компактные в старом смысле пространства называют счётно-компактными. Оба понятия равносильны в применении к метрическим пространствам.

Литература


Эта статья содержит материал из статьи Компактное пространство русской Википедии.

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.