Math Wiki
Fără descriere a modificării
Fără descriere a modificării
Etichetă: sourceedit
Linia 1: Linia 1:
 
[[Fișier:Teorema lui Lagrange fig. 1.JPG|thumb|right|200px]]
 
[[Fișier:Teorema lui Lagrange fig. 1.JPG|thumb|right|200px]]
  +
== Enunţ ==
DA
 
  +
'''Teorema creşterilor finite a lui Lagrange''' mai este deumită şi [[Prima teoremă a creșterilor finite]] sau [[Prima teoremă de medie]].
  +
Este o generalizare a [[teorema lui Rolle|teoremei lui Rolle]], în care [[funcție|funcția]] considerată nu are neapărat valori egale la capetele [[interval]]ului de definiţie.
  +
  +
'''Teoremă''' ([[Lagrange]]).
  +
Fie <math>f: [a, b] \rightarrow \mathbb R, \; a, b \in \mathbb R, \; a< b</math> o [[funcție]] care respectă următoarele condiţii:
  +
  +
'''1)''' '''f''' este [[continuitate|continuă]] pe intervalul [[mulțime închisă|închis]] <math>[a, b]; \!</math>
  +
  +
'''2)''' '''f''' este [[derivată|derivabilă]] pe intervalul [[mulțime deschisă|deschis]] <math>(a, b), \!</math>
  +
  +
atunci există cel puţin un [[punct]] '''c''' în intervalul deschis '''(a, b)''' (deci <math>c \in (a, b) \!</math>) pentru care:
  +
  +
::<math>f'(c) = \frac{f(b) - f(a)}{b-a}. \!</math>
  +
  +
== Consecinţe ==
  +
'''1)''' Dacă '''f''' are derivata nulă pe un interval atunci '''f''' este constantă pe acel interval.
  +
  +
'''2)''' Dacă '''f''', '''g''' au derivatele egale pe un interval atunci ele diferă pe acel interval doar printr-o constantă.
  +
  +
::<math>f'(x) = g'(x), \; \forall x \in E \; \Rightarrow \; f(x) - g(x) = k, \; \forall x \in E. \!</math>
  +
  +
'''3)''' Dacă derivata unei funcţii este (strict) pozitivă (respectiv negativă) pe un interval, atunci funcţia este (strict) crescătoare (respectiv descrescătoare) pe acel interval:
  +
  +
::<math>f'(x) \ge 0, \; \forall x \in E \; \Rightarrow \; f \!</math> este crescătoare pe '''E''';
  +
  +
::<math>f'(x) \le 0, \; \forall x \in E \; \Rightarrow \; f \!</math> este descrescătoare pe '''E''';
  +
  +
::<math>f'(x) > 0, \; \forall x \in E \; \Rightarrow \; f \!</math> este strict crescătoare pe '''E''';
  +
  +
::<math>f'(x) < 0, \; \forall x \in E \; \Rightarrow \; f \!</math> este strict descrescătoare pe '''E''',
  +
  +
unde s-a considerat <math>f: E \rightarrow \mathbb R, \!</math> '''E''' fiind interval închis.
  +
  +
  +
'''4)''' Fie <math>f: E \rightarrow \mathbb R, \!</math> '''E''' interval închis şi <math>x_0 \in E. \!</math>
  +
Dacă '''f''' este [[continuitate|continuă]] în <math>x_0 \!</math> şi [[derivată|derivabilă]] pe <math>E \setminus \{ x_0 \} \!</math> şi există [[limită a unei funcții|limita]] <math>\lim_{x \to x_0} f'(x) =l \in \mathbb {\bar R}, \!</math>
  +
atunci '''f''' admite derivată în <math>x_0 \!</math> şi avem:
  +
  +
::<math>f'(x_0) = l. \!</math>
  +
  +
Mai mult, dacă <math>l \in \mathbb R, \!</math> atunci '''f''' este derivabilă în <math>x_0 \!</math> şi:
  +
  +
::<math>f'(x_0) = l. \!</math>
  +
  +
== Aplicaţii ==
  +
'''1)''' Să se studieze aplicabilitatea teoremei lui Lagrange în cazul funcţiei:
  +
  +
::<math>f: [1, 3] \rightarrow \mathbb R, \; f(x) = \begin{cases} x, & daca \; 1 \le x \le 2 \\ \frac{x^4}{2}+1, & daca \; 2 < x \le 3 \end{cases} \!</math>
  +
  +
  +
''Soluţie''
  +
::<math>\lim_{x \to 2, \; x<2} x=2. \!</math>
  +
  +
Verificăm continuitatea funcţiei:
  +
  +
::<math>f(2) = \lim_{x \to 2, \; x<2} x =2 \!</math>
  +
  +
::<math>f(2) = \lim_{x \to 2, \; x>2} \frac{x^4}{4}+1 =5 \!</math>
  +
  +
Verificăm derivabilitatea:
  +
  +
::<math>f'(x) = \begin{cases} 1 & daca \; 1 \le x < 2 \\ \frac x 2 & daca \; 2< \le 3 \end{cases} \!</math>
  +
  +
În punctul '''x=2''' avem:
  +
  +
::<math>f'_s (2) = \lim_{x \to 2 \; x<2} \frac{x-2}{x-2} =1; \!</math>
  +
  +
::<math>f'_d (2) = \lim_{x \to 2 \; x>2} \frac{x^2 +1 -2}{x-2} = \frac 1 4 \!</math>
  +
  +
::<math>f'_d (2) = \lim_{x \to 2 \; x>2} \frac{(x-2)(x+2)}{x-2} = 1 \!</math>
  +
  +
Am obţinut:
  +
  +
::<math>f'_s = f'_d =1, \!</math>
  +
deci funcţia este derivabilă şi atunci se poate aplica teorema lui Lagrange:
  +
  +
::<math>\frac{f(3) - f(1)}{3-1} = \frac{\frac 9 4 +1 -1}{2} = \frac 9 8, \!</math>
  +
  +
se disting două cazuri:
  +
  +
* cazul 1: dacă <math>c \in (1, 2) \; \Rightarrow \; f'(x) = \frac 9 8 \; \Leftrightarrow \; 1=\frac 9 8,</math> imposibil
  +
* cazul 2: dacă <math>c \in (2, 3) \; \Rightarrow \; f'(c) = \frac 9 8 \; \Leftrightarrow \; \frac c 2 = \frac 9 8 \; \Leftrightarrow \; c= \frac 94 \in (2, 3).</math>
  +
  +
  +
  +
'''2)''' Să se demonstreze inegalitatea:
  +
  +
::<math>\frac{x}{1+x} < \ln (1+x) < x, \; x>0; \!</math>
  +
  +
  +
''Soluţie''.
  +
Aplicăm teorema lui Lagrange funcţiei <math>f(t) = \ln (1+t) \!</math> pe intervalul <math>[0, x]; \!</math>
  +
  +
::<math>\frac{f(b) - f(a)}{b-a}= f'(c) \!</math>
  +
  +
devine
  +
  +
::<math>\frac{f(b) - f(0)}{x-0}= f'(c) \!</math>
  +
  +
deci:
  +
  +
::<math>\frac{\ln (1+t)}{x} = \frac{1}{1+c}. \!</math>
  +
  +
Cum <math>0<c< x, \!</math> avem:
  +
  +
::<math>1< c+1<x+1 \!</math> şi <math>1>\frac {1}{c+1}>\frac{1}{x+1} \!</math>
  +
  +
::<math>\Rightarrow \; 1>\frac{\ln (1+x)}{x}> \frac{1}{x+1} \; \Rightarrow \; x> \ln (1+x) > \frac{x}{x+1}. \!</math>
  +
  +
== Vezi şi ==
  +
* [[Teoreme de medie]]
  +
* [[Teorema lui Lagrange|Teoremele lui Lagrange]]
  +
  +
== Resurse ==
  +
* [http://meditatiionline.ro/44100-21-247-0-0-Formule_Matematica_Functii_derivabile_Teorema_lui_Lagrange.html MeditatiiOnline.ro]
  +
* [http://www.e-formule.ro/wp-content/uploads/teorema-lui-lagrange.htm e-Formule.ro]
  +
* [http://staticlb.didactic.ro/uploads/material/32/41/5//teoremaluilagrange.pdf Aplicaţii]
  +
 
[[Categorie:Calcul diferențial]]
 
[[Categorie:Calcul diferențial]]
 
[[Categorie:Teoreme]]
 
[[Categorie:Teoreme]]

Versiunea de la data 12 decembrie 2015 12:26

Teorema lui Lagrange fig

Enunţ

Teorema creşterilor finite a lui Lagrange mai este deumită şi Prima teoremă a creșterilor finite sau Prima teoremă de medie. Este o generalizare a teoremei lui Rolle, în care funcția considerată nu are neapărat valori egale la capetele intervalului de definiţie.

Teoremă (Lagrange). Fie o funcție care respectă următoarele condiţii:

1) f este continuă pe intervalul închis

2) f este derivabilă pe intervalul deschis

atunci există cel puţin un punct c în intervalul deschis (a, b) (deci ) pentru care:

Consecinţe

1) Dacă f are derivata nulă pe un interval atunci f este constantă pe acel interval.

2) Dacă f, g au derivatele egale pe un interval atunci ele diferă pe acel interval doar printr-o constantă.

3) Dacă derivata unei funcţii este (strict) pozitivă (respectiv negativă) pe un interval, atunci funcţia este (strict) crescătoare (respectiv descrescătoare) pe acel interval:

este crescătoare pe E;
este descrescătoare pe E;
este strict crescătoare pe E;
este strict descrescătoare pe E,

unde s-a considerat E fiind interval închis.


4) Fie E interval închis şi Dacă f este continuă în şi derivabilă pe şi există limita atunci f admite derivată în şi avem:

Mai mult, dacă atunci f este derivabilă în şi:

Aplicaţii

1) Să se studieze aplicabilitatea teoremei lui Lagrange în cazul funcţiei:


Soluţie

Verificăm continuitatea funcţiei:

Verificăm derivabilitatea:

În punctul x=2 avem:

Am obţinut:

deci funcţia este derivabilă şi atunci se poate aplica teorema lui Lagrange:

se disting două cazuri:

  • cazul 1: dacă imposibil
  • cazul 2: dacă


2) Să se demonstreze inegalitatea:


Soluţie. Aplicăm teorema lui Lagrange funcţiei pe intervalul

devine

deci:

Cum avem:

şi

Vezi şi

Resurse